

django-health-check

This project checks for various conditions and provides reports when anomalous
behavior is detected. Many of these checks involve connecting to back-end
services and ensuring basic operations are successful.

Contents:

	django-health-check
	Use Cases

	Supported Versions

	Installation

	Setting up monitoring

	Getting machine readable JSON reports

	Writing a custom health check

	Customizing output

	Django command

	Other resources

	contrib
	psutil

	celery

	Settings
	Security

	psutil

	Celery Health Check

	ChangeLog

django-health-check

[image: version] [https://pypi.python.org/pypi/django-health-check/] [image: coverage] [https://codecov.io/gh/KristianOellegaard/django-health-check] [image: health] [https://landscape.io/github/KristianOellegaard/django-health-check/master] [image: license]

This project checks for various conditions and provides reports when anomalous
behavior is detected.

The following health checks are bundled with this project:

	cache

	database

	storage

	disk and memory utilization (via psutil)

	AWS S3 storage

	Celery task queue

	Celery ping

	RabbitMQ

	Migrations

Writing your own custom health checks is also very quick and easy.

We also like contributions, so don’t be afraid to make a pull request.

Use Cases

The primary intended use case is to monitor conditions via HTTP(S), with
responses available in HTML and JSON formats. When you get back a response that
includes one or more problems, you can then decide the appropriate course of
action, which could include generating notifications and/or automating the
replacement of a failing node with a new one. If you are monitoring health in a
high-availability environment with a load balancer that returns responses from
multiple nodes, please note that certain checks (e.g., disk and memory usage)
will return responses specific to the node selected by the load balancer.

Supported Versions

We officially only support the latest version of Python as well as the
latest version of Django and the latest Django LTS version.

Installation

First install the django-health-check package:

pip install django-health-check

Add the health checker to a URL you want to use:

urlpatterns = [
 # ...
 url(r'^ht/', include('health_check.urls')),
]

Add the health_check applications to your INSTALLED_APPS:

INSTALLED_APPS = [
 # ...
 'health_check', # required
 'health_check.db', # stock Django health checkers
 'health_check.cache',
 'health_check.storage',
 'health_check.contrib.migrations',
 'health_check.contrib.celery', # requires celery
 'health_check.contrib.celery_ping', # requires celery
 'health_check.contrib.psutil', # disk and memory utilization; requires psutil
 'health_check.contrib.s3boto3_storage', # requires boto3 and S3BotoStorage backend
 'health_check.contrib.rabbitmq', # requires RabbitMQ broker
 'health_check.contrib.redis', # requires Redis broker
]

Note : If using boto 2.x.x use health_check.contrib.s3boto_storage

(Optional) If using the psutil app, you can configure disk and memory
threshold settings; otherwise below defaults are assumed. If you want to disable
one of these checks, set its value to None.

HEALTH_CHECK = {
 'DISK_USAGE_MAX': 90, # percent
 'MEMORY_MIN': 100, # in MB
}

If using the DB check, run migrations:

django-admin migrate

To use the RabbitMQ healthcheck, please make sure that there is a variable named BROKER_URL
on django.conf.settings with the required format to connect to your rabbit server. For example:

BROKER_URL = amqp://myuser:mypassword@localhost:5672/myvhost

To use the Redis healthcheck, please make sure that there is a variable named REDIS_URL
on django.conf.settings with the required format to connect to your redis server. For example:

REDIS_URL = redis://localhost:6370

Setting up monitoring

You can use tools like Pingdom [https://www.pingdom.com/] or other uptime robots to monitor service status.
The /ht/ endpoint will respond a HTTP 200 if all checks passed
and a HTTP 500 if any of the tests failed.

$ curl -v -X GET -H http://www.example.com/ht/

> GET /ht/ HTTP/1.1
> Host: www.example.com
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: text/html; charset=utf-8

<!-- This is an excerpt -->
<div class="container">
 <h1>System status</h1>
 <table>
 <tr>
 <td class="status_1"></td>
 <td>CacheBackend</td>
 <td>working</td>
 </tr>
 <tr>
 <td class="status_1"></td>
 <td>DatabaseBackend</td>
 <td>working</td>
 </tr>
 <tr>
 <td class="status_1"></td>
 <td>S3BotoStorageHealthCheck</td>
 <td>working</td>
 </tr>
 </table>
</div>

Getting machine readable JSON reports

If you want machine readable status reports you can request the /ht/
endpoint with the Accept HTTP header set to application/json
or pass format=json as a query parameter.

The backend will return a JSON response:

$ curl -v -X GET -H "Accept: application/json" http://www.example.com/ht/

> GET /ht/ HTTP/1.1
> Host: www.example.com
> Accept: application/json
>
< HTTP/1.1 200 OK
< Content-Type: application/json

{
 "CacheBackend": "working",
 "DatabaseBackend": "working",
 "S3BotoStorageHealthCheck": "working"
}

$ curl -v -X GET http://www.example.com/ht/?format=json

> GET /ht/?format=json HTTP/1.1
> Host: www.example.com
>
< HTTP/1.1 200 OK
< Content-Type: application/json

{
 "CacheBackend": "working",
 "DatabaseBackend": "working",
 "S3BotoStorageHealthCheck": "working"
}

Writing a custom health check

Writing a health check is quick and easy:

from health_check.backends import BaseHealthCheckBackend

class MyHealthCheckBackend(BaseHealthCheckBackend):
 #: The status endpoints will respond with a 200 status code
 #: even if the check errors.
 critical_service = False

 def check_status(self):
 # The test code goes here.
 # You can use `self.add_error` or
 # raise a `HealthCheckException`,
 # similar to Django's form validation.
 pass

 def identifier(self):
 return self.__class__.__name__ # Display name on the endpoint.

After writing a custom checker, register it in your app configuration:

from django.apps import AppConfig

from health_check.plugins import plugin_dir

class MyAppConfig(AppConfig):
 name = 'my_app'

 def ready(self):
 from .backends import MyHealthCheckBackend
 plugin_dir.register(MyHealthCheckBackend)

Make sure the application you write the checker into is registered in your INSTALLED_APPS.

Customizing output

You can customize HTML or JSON rendering by inheriting from MainView in health_check.views
and customizing the template_name, get, render_to_response and render_to_response_json properties:

views.py
from health_check.views import MainView

class HealthCheckCustomView(MainView):
 template_name = 'myapp/health_check_dashboard.html' # customize the used templates

 def get(self, request, *args, **kwargs):
 plugins = []
 status = 200 # needs to be filled status you need
 # ...
 if 'application/json' in request.META.get('HTTP_ACCEPT', ''):
 return self.render_to_response_json(plugins, status)
 return self.render_to_response(plugins, status)

 def render_to_response(self, plugins, status): # customize HTML output
 return HttpResponse('COOL' if status == 200 else 'SWEATY', status=status)

 def render_to_response_json(self, plugins, status): # customize JSON output
 return JsonResponse(
 {str(p.identifier()): 'COOL' if status == 200 else 'SWEATY' for p in plugins},
 status=status
)

urls.py
import views

urlpatterns = [
 # ...
 url(r'^ht/$', views.HealthCheckCustomView.as_view(), name='health_check_custom'),
]

Django command

You can run the Django command health_check to perform your health checks via the command line,
or periodically with a cron, as follow:

django-admin health_check

This should yield the following output:

DatabaseHealthCheck ... working
CustomHealthCheck ... unavailable: Something went wrong!

Similar to the http version, a critical error will cause the command to quit with the exit code 1.

Other resources

	django-watchman [https://github.com/mwarkentin/django-watchman] is a package that does some of the same things in a slightly different way.

	See this weblog [https://www.vincit.fi/en/blog/deploying-django-to-elastic-beanstalk-with-https-redirects-and-functional-health-checks/] about configuring Django and health checking with AWS Elastic Load Balancer.

contrib

psutil

Full disks and out-of-memory conditions are common causes of service outages.
These situations can be averted by checking disk and memory utilization via the
psutil package:

pip install psutil

Once that dependency has been installed, make sure that the corresponding Django
app has been added to INSTALLED_APPS:

INSTALLED_APPS = [
 # ...
 'health_check', # required
 'health_check.contrib.psutil', # disk and memory utilization; requires psutil
 # ...
]

The following default settings will be used to check for disk and memory
utilization. If you would prefer different thresholds, you can add the dictionary
below to your Django settings file and adjust the values accordingly. If you want
to disable any of these checks, set its value to None.

HEALTH_CHECK = {
 'DISK_USAGE_MAX': 90, # percent
 'MEMORY_MIN' = 100, # in MB
}

celery

If you are using Celery you may choose between two different Celery checks.

health_check.contrib.celery sends a task to the queue and it expects that task
to be executed in HEALTHCHECK_CELERY_TIMEOUT seconds which by default is three seconds.
You may override that in your Django settings module. This check is suitable for use cases
which require that tasks can be processed frequently all the time.

health_check.contrib.celery_ping is a different check. It checks that each predefined
Celery task queue has a consumer (i.e. worker) that responds {“ok”: “pong”} in
HEALTHCHECK_CELERY_PING_TIMEOUT seconds. The default for this is one second.
You may override that in your Django settings module. This check is suitable for use cases
which don’t require that tasks are executed almost instantly but require that they are going
to be executed in sometime the future i.e. that the worker process is alive and processing tasks
all the time.

You may also use both of them. To use these checks add them to INSTALLED_APPS in your
Django settings module.

Settings

Settings can be configured via the HEALTH_CHECK dictionary.

	
WARNINGS_AS_ERRORS

	Treats ServiceWarning as errors, meaning they will cause the views
to respond with a 500 status code. Default is True. If set to
False warnings will be displayed in the template on in the JSON
response but the status code will remain a 200.

Security

Django health check can be used as a possible DOS attack vector as it can put
your system under a lot of stress. As a default the view is also not cached by
CDNs. Therefore we recommend to use a secure token to protect you application
servers from an attacker.

	Setup HTTPS. Seriously…

	Add a secure token to your URL.

Create a secure token:

python -c "import secrets; print(secrets.token_urlsafe())"

Add it to your URL:

urlpatterns = [
 # ...
 url(r'^ht/super_secret_token/'), include('health_check.urls')),
]

You can still use any uptime bot that is URL based while enjoying token protection.

Warning

Do NOT use Django’s SECRET_KEY setting. This should never be exposed,
to any third party. Not even your trusted uptime bot.

psutil

The following default settings will be used to check for disk and memory
utilization. If you would prefer different thresholds, you can add the dictionary
below to your Django settings file and adjust the values accordingly. If you want
to disable any of these checks, set its value to None.

HEALTH_CHECK = {
 'DISK_USAGE_MAX': 90, # percent
 'MEMORY_MIN' = 100, # in MB
}

With the above default settings, warnings will be reported when disk utilization
exceeds 90% or available memory drops below 100 MB.

	
DISK_USAGE_MAX

	Specify the desired disk utilization threshold, in percent. When disk usage
exceeds the specified value, a warning will be reported.

	
MEMORY_MIN

	Specify the desired memory utilization threshold, in megabytes. When available
memory falls below the specified value, a warning will be reported.

Celery Health Check

Using django.settings you may exert more fine-grained control over the behavior of the celery health check

Additional Settings

	Name

	Type

	Default

	Description

	HEALTHCHECK_CELERY_QUEUE_TIMEOUT

	Number

	3

	Specifies the maximum amount of time a task may spend in the queue before being automatically revoked with a TaskRevokedError.

	HEALTHCHECK_CELERY_RESULT_TIMEOUT

	Number

	3

	Specifies the maximum total time for a task to complete and return a result, including queue time.

ChangeLog

This package is released on GitHub. Please refer to the GitHub
release page to review the changes in each version.

https://github.com/KristianOellegaard/django-health-check/releases

Index

 D
 | M
 | W

D

 	
 	DISK_USAGE_MAX (built-in variable)

M

 	
 	MEMORY_MIN (built-in variable)

W

 	
 	WARNINGS_AS_ERRORS (built-in variable)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 django-health-check

 		
 django-health-check

 		
 Use Cases

 		
 Supported Versions

 		
 Installation

 		
 Setting up monitoring

 		
 Getting machine readable JSON reports

 		
 Writing a custom health check

 		
 Customizing output

 		
 Django command

 		
 Other resources

 		
 contrib

 		
 psutil

 		
 celery

 		
 Settings

 		
 Security

 		
 psutil

 		
 Celery Health Check

 		
 ChangeLog

_static/up.png

_static/up-pressed.png

